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Abstract

Objective. to develop an optimization and training pipeline for a classification model based on
principal component analysis and logistic regression using neuroimages from PET with
2-['*F]fluoro-2-deoxy-D-glucose (FDG PET) for the diagnosis of Alzheimer’s disease (AD). Approach.
as training data, 200 FDG PET neuroimages were used, 100 from the group of patients with AD and
100 from the group of cognitively normal subjects (CN), downloaded from the repository of the
Alzheimer’s Disease Neuroimaging Initiative (ADNI). Regularization methods L1 and L2 were tested
and their respective strength varied by the hyperparameter C. Once the best combination of
hyperparameters was determined, it was used to train the final classification model, which was then
applied to test data, consisting of 192 FDG PET neuroimages, 100 from subjects with no evidence of
AD (nAD) and 92 from the AD group, obtained at the Centro de Diagnéstico por Imagem (CDI).
Main results. the best combination of hyperparameters was L1 regularization and C = 0.316. The final
results on test data were accuracy = 88.54%, recall = 90.22%, precision = 86.46% and

AUC = 94.75%, indicating that there was a good generalization to neuroimages outside the training
set. Adjusting each principal component by its respective weight, an interpretable image was obtained
that represents the regions of greater or lesser probability for AD given high voxel intensities. The
resulting image matches what is expected by the pathophysiology of AD. Significance. our classification
model was trained on publicly available and robust data and tested, with good results, on clinical
routine data. Our study shows that it serves as a powerful and interpretable tool capable of assisting in
the diagnosis of AD in the possession of FDG PET neuroimages. The relationship between
classification model output scores and AD progression can and should be explored in future studies.

1. Introduction

Neurodegenerative dementia currently affects about 47 million people, a number that is expected to increase to
131 million by the year 2050 (Arvanitakis et al 2019). Among the causes of dementia, the main one is Alzheimer’s
disease (AD), which corresponds between 60% and 80% of the total cases (Brown et al 2014, Marcus et al 2014).
Among the symptoms of AD, what stands out the most is the gradual and increasing loss of memory, which
generates a difficulty in learning new information and makes the person affected by the disease repeat questions
and conversations frequently and not functionally independent (Arvanitakis et al 2019).

© 2024 Institute of Physics and Engineering in Medicine
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AD is pathophysiologically characterized by early neuronal loss and gliosis in the mesiotemporal cortex, with
subsequent spread to other brain regions (Brown et al 2014). The classic pattern of hypometabolism in the brain
involves the posterior cingulate gyrus, precuneus, posterior temporal and parietal lobes, and may include the
prefrontal cortex in advanced cases of the disease (Brown et al 2014, Marcus et al 2014). Histopathological
analysis is the reference standard for the diagnosis of AD due to the presence of deposits of abnormally
phosphorylated 7 proteins and extracellular §-amyloid in the brain (Brown et al 2014). As brain biopsies are not
easy to perform, positron emission tomography (PET) with 2-['*F]fluoro-2-deoxy-D-glucose (FDG PET) has
been shown to be an extremely useful imaging modality for diagnosing AD (Brown et al 2014, Marcus et al 2014).

Given the intricate nature of AD diagnosis, which necessitates clinical correlations, diverse neuroimaging
modalities, and cognitive tests, machine learning (Shinde and Shah 2018) (ML) models have been used to
expedite the process. These models are particularly beneficial for early diagnosis, enabling timely intervention
and appropriate therapeutic measures. Among the studies involving ML and FDG PET for AD diagnosis, those
employing Deep Learning (Hao et al 2016) (DL) techniques are particularly noteworthy. For instance, Ding, Y
etal (Ding et al 2019) utilized the Inception V3 convolutional neural network architecture. This study is
distinguished by its use of follow-up data from ADNI patients, training the model solely on the final clinical
diagnosis, and classifying patients into AD, mild cognitive impairment (MCI), or no evidence of dementia. The
study concluded that the DL model outperformed radiology readers in identifying patients who would
eventually receive an AD diagnosis. Other studies have expanded on this approach by incorporating additional
classes such as Lewy body disease (Etminani et al 2022) and subdividing MCI into Early MCI and Late MCI
(Singh et al 2017), yielding promising results.

Deep learning models, while advantageous in their ability to process image data directly (Lai 2019), present
several challenges that limit their reproducibility in clinical settings. These include the necessity for large datasets
for model training, extensive training durations, high computational power requirements, and the complexity
of model interpretation (Zohuri and Moghaddam 2020). Such constraints hinder the reproducibility of these
methods in clinical environments where physicians seek intuitive tools for second opinions on AD diagnoses,
without the need for advanced computing resources.

With regard to classic machine learning methods, the disadvantage is that, in order to implement the
classification model, a robust feature extraction method is necessary. Some successful examples in the literature
include the use of several features typical of radiomics (Nancy Noella and Priyadarshini 2023) (such as contrast,
entropy and intensity gradient, for example), the use of VOIs (Dukart et al 2013, Lu et al 2017) (spatial features)
in brain regions known to characterize Alzheimer’s disease or covariance patterns extracted by principal
component analysis (PCA) (Habeck et al 2008, Habeck 2010). Classification models, in turn, tend to involve
random forest (RF) (Lu et al 2017), logistic regression (LR) (Habeck et al 2008, Habeck 2010) and support vector
machine (SVM) (Lu et al 2017, Nancy Noella and Priyadarshini 2023).

In particular, the combined application of PCA (Abdi and Williams 2010) and LR (Liu et al 2009) is
promising. PCA, a dimensionality reduction technique (Santo 2012), can be applied to a collection of FDG PET
neuroimages to extract covariance patterns or principal components (Habeck 2010, Spetsieris et al 2013,
Blazhenets eral 2019). In turn, LR, a classification model, can be employed on the subject scores (i.e. pattern
expression values for each subject) of the principal components. This allows the derivation of linear coefficients
that can combine multiple principal components into a singular disease-related spatial covariance pattern
(Spetsieris et al 2013, Blazhenets et al 2019), which corresponds to an interpretable biomarker. The great
advantage of using PCA and LR, therefore, lies in the interpretability of the final model. Instead of using complex
feature extraction methods and non-linear classification models, PCA can return enlightening and interpretable
covariance patterns while the logistic regression model builds a simple and visual decision rule that is easily
generalizable.

Two instances of the application of these two techniques for AD prediction using FDG PET neuroimaging
can be highlighted. The first study (Habeck et al 2008) used only private data, while the second (Habeck and
Stern 2010) relied solely on publicly available data obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI). Both studies successfully distinguished healthy subjects from those with AD, but with a
limited dataset (N = 177 and N = 80, respectively) and experimental framework. In addition, these studies did
not optimize the classification model. The selection of principal components for training the LR model was
limited and could potentially be enhanced through the application of regularization methods (Salehi et al 2019).

In an effort to demonstrate the robustness, applicability and predictive capacity of PCA and LR within a
realistic experimental framework, the training and optimization of the model were conducted exclusively on
publicly available data (ADNI), while testing was carried out on data derived from clinical practice, obtained at
Centro de Diagnostico por Imagem (CDI), reflecting a realistic and practical context. The final outcomes were
compared with results derived from DL methodologies in existing literature. For a more direct comparison,
three additional models were trained and optimized, namely SVM (Noble 2006), Multi-layer Perceptron
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(Popescu et al 2009) (MLP) and RF (Breiman 2001). Furthermore, we show how the parameters of the
classification model can be intuitively and visually interpreted.

2.Background

2.1. Principal component analysis (PCA)

PCA is a multivariate technique that seeks to explain a set of correlated variables in terms of a reduced number of
uncorrelated variables, with greater variance (Abdi and Williams 2010, Santo 2012). Thus, this technique aims to
compress and simplify the structure of a dataset. In order to fulfill them, PCA estimates new variables called
principal components, which are obtained as linear combinations of the original variables of the dataset (Abdi
and Williams 2010, Santo 2012). The first principal component must have the largest possible variance. The
second component is computed with the restriction that it must be orthogonal to the first one and have the
largest possible variance. The other principal components, in turn, are computed similarly. The corresponding
values of each observation for these new variables are called scores, and they can be interpreted geometrically as
being the projections of the observations on the principal components (Abdi and Williams 2010, Santo 2012).

In the context of FDG PET neuroimages, it is possible to generate a matrix M(i, j) corresponding to all
neuroimages of a dataset, so that i represents the subject index and j represents the voxel index. In this way, each
neuroimage corresponds to a row vector of the matrix M, with all voxels properly organized horizontally. Thus,
after extracting the principal components, we have:

M@, j) = SSI(DPC()) + SS:(D)PC(j) + SS3(D)PC3()) + ...

so that the entire matrix is decomposed in terms of principal components (PC,( j)), which explains different and
decreasing percentages of the total data variance, and subject scores (S5,(7)), which indicate the projection of the
neuroimage of the subject i on the corresponding principal component. Therefore, this is the advantage of using
PCA: instead of dealing with the data in terms of voxels, it deals with principal components, where one can take
only the ones that add up to the greater part of the total explained variance.

2.2. Logistic regression (LR) and regularization methods

Let §S;(1), $55(0), ..., SS,(1) be the set of observed subject scores without error, with a total of # observations and p
principal components. Thus, the data can be summarized by the matrix X = (S5, SS,....,SS,,). Furthermore,

Y = (% ¥ »-»%,)! is considered a random sample of the binary response variable associated with the
observations in X, thatis, y; € [0, 1], i = 1,...,n (with 0 indicating the negative group and 1 the positive group).
Thus, the LR model is given by (Liu et al (2009, Salehi et al 2019)

Y: =m+ €,1=1,..,n,

where 7;is the probability of the positive class given (SS;(i), SS(9);...,SS,(1)), calculated as (Liu et al 2009, Salehi
etal2019)

eXP(ﬂo + Zlessv(i)ﬁv)
1+ exp(Bo + XF_ 88, ()3,

m = P[(88:(1), §82(1)5..., SSp(1))] =

where 3, is the weight associated with PC,. The parameters (3, are determined from the minimization of the cost
function given by the expression (Liu et al 2009, Salehi et al 2019)

-3 [log(l —m) + log( T ) ]
i=1 1l —m

In order to increase the generality of the classification model, it is possible to limit its flexibility by penalizing
it for high parameter values (Friedman et al 2010, Salehi et al 2019). One of these methods is the L2
regularization. It is applied by adding a penalty term AY"2_, 32 to the cost function (Friedman et al 2010, Salehi
etal2019). The A controls the emphasis that is given to the penalty term: the larger A, the more the coefficients
tend to 0 (in Python, the regularization strength is controlled by the inverse of A\, C=1/\). Although the
coefficients tend to 0, few coefficients actually reach zero value (Friedman et al 2010, Salehi et al 2019). A more
aggressive method is the L1-type regularization. The term that is added to the cost function is similar to the
method described earlier (Friedman et al 2010, Salehi et al 2019): A} -f_ | 3,]. With this penalty term, the less
important predictor principal components are forced to have a null coefficient (Friedman et al 2010, Salehi et al
2019).
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Table 1. The demographic information for the ADNI and CDI datasets is presented, including the total number of subjects and
the distribution of ages, segregated by sex and group. Additionally, the results from the Shapiro-Wilk normality test, represented
by p-values, are also provided (non-normal distributions were duly highlighted, p-value <0.05).

Age distribution

Dataset Group Sex Min." Mean Max.” S.D.c p-value Median IQR® Nf
ADNI AD® P 56 71.3 85 5.6 <0.001' 73 3.5 47
M- 57 71.5 85 5.8 0.155 72 5 53
CN" F 56 70.7 93 5.0 <0.001' 71 5 57
M 62 72.2 75 2.5 <0.001' 73 2 43
CDI AD F 53 73.7 89 8.0 0.658 74 11 60
M 60 73.6 85 7.8 0.063 72 11.5 32
nAD' F 50 63.6 89 10.0 <0.001' 60 15 70
M 50 66.1 84 9.4 0.602 65.5 13 30

Notes.

* Minimum age.

® Maximum age.

¢ Standard deviation.

4 Shapiro-Wilk test.

¢ Interquantile range.

f Number of subjects.

8 Alzheimer’s disease group.

" Cognitively normal group.

 Without evidence of any neurodegenerative disease group.
J Female.

¥ Male.

! Non-normal distribution, p-value < 0.05.

3. Methods

3.1. Data collection

3.1.1. FDG PET neuroimages—ADNI

The publicly available data were downloaded from the ADNI repository. The ADNI was launched in 2003 as a
public-private partnership, led by Principal Investigator Michael W Weiner, MD. The primary goal of ADNT has
been to test whether serial magnetic resonance imaging (MRI), PET, other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of mild cognitive impairment
(MCI) and early AD. For up-to-date information, see www.adni-info.org.

The search filters used referred to the imaging modality, set to FDG PET, and to the group of subjects, set to
Cognitively Normal (CN group), corresponding to the healthy subjects, without evidence of cognitive problems
of any kind or neurodegenerative diseases, and Alzheimer’s disease (AD group), corresponding to subjects with
AD, appropriately diagnosed and identified according to the ADNI criteria.

In total, 100 neuroimages were downloaded for the CN group and 100 neuroimages for the AD group. The
acquisition dates for these neuroimages were between the years 2006 and 2020. The protocol consisted of 30 min
3-dimensional brain scans 30-60 min after the injection of 185 £ 18.5 MBq of 18F-FDG (more details can be
found here). The minimum age of subjects whose neuroimages were collected was set at 50 years. Demographic
data regarding this dataset are available in table 1.

3.1.2. FDG PET neuroimages—CDI

The neuroimages from the clinical routine were collected from a folder organized by date and by patients, which
is kept as backup. For there to be correspondence between the clinic patients and the AD and CN groups of the
ADNI, only neuroimages that, according to the medical report, referred to subjects without evidence of any
neurodegenerative disease, but with possible microangiopathy (characteristic of aging) (nAD group) or subjects
whose neuroimage was suggestive of AD, without the possibility of other neurodegenerative diseases (AD group)
were collected.

The FDG PET neuroimages were acquired at resting-state, in fasting subjects for at least 4 h with a normal
glycemiclevel, using an integrated PET /CT Biograph Siemens camera (Erlangen, Germany), after an
intravenous administration of 100 MBg, per 10 min acquisition at 45 min post-injection. PET image
reconstruction was performed using the attenuation-weighted ordered subsets expectation maximization (4
iterations, 21 subsets, 4 mm Gaussian postfilter). PET image matrix size was 336 x 336 x 110
(1.0182 mm x 1.0182 mm x 1.5000 mm spacing) voxels, with Gaussian post-reconstruction filter and
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corrected for attenuation using a CT transmission scan. Thus, 100 neuroimages were collected for the nAD
group and 92 for the AD group. The minimum age of the subjects whose neuroimages were collected was set at
50 years. Demographic data regarding this dataset are available in table 1.

3.2. Data processing
All neuroimages were converted to NIfTT format, allowing them to be manipulated by SPM12. The neuroimages
were reoriented in order to standardize the relative positioning of the brain and then spatial normalization was
performed. The spatial normalization template was the default for SPM 12 (MNI space). After spatial
normalization, all neuroimages were smoothed using the smoothing filter from SPM12, also with the default
settings.

A mask was generated from the neuroimages of the CN group using ScanVP (Spetsieris et al 2013) (with a
threshold of 20%) and later applied to all neuroimages.

3.3. Data organization

All neuroimages were manipulated in Python so that each voxel of the same neuroimage was a distinct column of
amatrix row. Then, all elements of the same row were normalized between 0 and 1 using the maximum-
minimum (linear scaling) method, so that voxels from different neuroimages have the same maximum and
minimum range. Finally, the data were organized as follows:

+ Training/validation data: referring to ADNI data. This dataset was used for the optimization and training of
the classification model.

+ Test data: referring to data from CDI. After adjusting the final classification model, it was tested on the data
obtained from the clinical routine.

3.4. Optimization pipeline and model training
In Python, it is possible to estimate the best combination of hyperparameters using GridSearchCV , which is a
function from the scikit-learn library (Pedregosa et al 2011) that trains and tests, for different combinations of
hyperparameters, the classification model, returning its final performance in several metrics (accuracy, recall,
precision and F1-score, for example). The metrics are estimated using the K-Fold cross validation method, where,
in this work, 5 folds of identical size were used. In this way, through the automation allowed by the GridSearchCV
function, we explored the metrics for all combinations of the hyperparameter space. The combination with the
best results were selected.

Briefly, for each hyperparameter combination, the following steps were executed:

(i) K-Fold crossvalidation divides the training data into 5 training and test folds;

(if) PCA is applied to the training folds, extracting the principal components that add up to 80% of the total
variance explained in descending order of importance;

(iii) In principal components space, the training folds are used to train a LR model with the combinations of
hyperparameters under consideration;

(iv) With the model trained, it is applied over the test fold;
(v) The final metricis estimated as the average of the calculated metrics for all test folds.
The estimated metrics were accuracy, recall, precision and F1-score, which is defined as the harmonic mean
of precision and recall. The hyperparameter space used to generate the combinations was:
+ penalty (type of regularization): 11°, 12’ and ‘none’;
+ C(inverse of ), which indicates the emphasis of the regularization method): alogarithmic sequence with a

total of 25 terms, from 0.01 to 100;

For PCA, whiten = True was used, so that, at each iteration of GridSearchCV , the normalization over each
predictor variable by the mean and standard deviation was carried out; for LR, solver = ‘saga’ was used, as it is
compatible with all types of regularization tested.
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Figure 1. Flowchart summarizing the methodology. First, training and test data are separated. Then the training data is used for
hyperparameter optimization. Once the best combination of hyperparameters is found, it is used to train the final model on all the
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3.5. Testing of the classification model

The best combination of hyperparameters was determined using the F1-score (as it expresses a balance between
recall and precision) and then used to train the classification model over all training data. As in the optimization
pipeline, the classification model consisted of applying PCA, extracting the principal components thatadd up to
80% of the total explained variance in descending order of importance, followed by training a LR model.

For testing, the results obtained from the final classification model on the test data were analyzed. As abrief
summary, the entire methodology is shown as a flowchart in figure 1.

Please be aware that, for the three additional models trained for the head-to-head comparison, we adhered to
anidentical procedural methodology. This entailed the optimization of hyperparameters through GridSearchCV
and training on the ADNI dataset (principal components as features). Subsequently, the models were applied to
the test data. For comprehensive details regarding the hyperparameter space explored for each model and
supplementary findings, we direct readers to consult the supplementary materials.

4, Results

Figure 2 shows how the mean values for each metric evolved in the hyperparameters optimization step for the

two types of regularization tested. In the absence of regularization parameters, the mean achieved for each
metric was: accuracy = 85.00%, sensitivity = 84.00%, precision = 85.46% and F1-score = 84.62%. Thus, of all
51 combinations of hyperparameters tested, the best in terms of F1-score was C = 0.316 and penalty = ‘L1’. In
table 2 the metrics are shown for each test fold for the best combination of hyperparameters.

With the classification model trained on the entire training dataset using the best combination of
hyperparameters, many principal components had zero weight. By figure 3, it is possible to account for 23
principal components, out of a total of 50, with weight equal to zero.

Taking the linear combination of all principal components adjusted by their respective weights, it is possible
to interpret the decision rule of the classification model. The result of this linear combination is shown in
figure 4. A reasonable way to read figure 4 is that voxels with high intensity (higher brain metabolism) in the
regions in red are associated with a higher probability for the AD group, while the regions in blue are associated

with alower probability.

The confusion matrix referring to the application of the classification model on the test data is shown in
figure 5. Init, it is possible to notice that there were 170 true positives, 13 false positives, and 9 false negatives on
the test data, which leads to a total accuracy of 88.54%. Regarding the more specific metrics, a recall 0f90.22%, a
precision of 86.46%, and a F1-score of 88.30% were obtained. The ROC curve of the model over the test data is

shown in figure 6 and resulted in an AUC = 94.75%.

The comparison of the final metrics on the test data with those obtained by the additional trained models
(SVM, MLP and RF) is shown in table 3. The statistical difference between the prediction accuracy of the
additional models and the LR was verified via the McNemar test (Japkowicz and Shah 2011) (95% confidence
level: o < 0.05 for significance). Further details and results regarding the additional models can be found in the

supplementary materials.
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Figure 2. Evolution of the classification model metrics in the hyperparameters optimization step for the two tested regularization
methods and for different regularization strengths. Note that, although the L2-type regularization was more stable for the accuracy
and F1-score, the L1-type regularization showed a higher peak for both.

Table 2. All metrics referring to the best combination of hyperparameters for the test folds. The mean and
standard deviation for each metric for all folds were also calculated.

Results on test folds
Metric 1° (%) 2° (%) 3°(%) 4° (%) 5° (%) Mean (%) S.D.* (%)
Accuracy 92.50 85.00 87.50 87.50 100 90.50 5.34
F1-score 91.89 83.33 86.49 87.18 100 89.78 5.79
Recall 85.00 75.00 80.00 85.00 100 85.00 8.37
Precision 100 93.75 94.12 89.47 100 95.47 4.04

2 Standard deviation.

As the LR model predicts probability values, it is possible to construct a scatter plot indicating the log-
transformed odds (standardized by the mean and standard deviation of the CN group) of each neuroimage as a
more intuitive method of analyzing the results. We have the distribution of points shown in figure 7.

As output scores are directly related to the degree of expression of the AD biomarker pattern (figure 4), it is
possible that they also indicate disease progression. For this purpose, four FDG PET neuroimages were selected:
one from a healthy subject while the others show different stages of AD (early, moderate, and advanced). In
figure 8, axial slices of these spatially normalized neuroimages are shown, as well as their respective output
scores. As a second example, in figure 9 it is shown how the score of a patient with AD increases as the disease
progresses after one year and three months.

5. Discussion

Regarding the hyperparameter optimization step, it is possible to notice in figure 2 that the L2 regularization
showed greater stability within the space of tested values. This was to be expected since such a regularization
method is conservative in the selection of predictor variables. The best results, however, only appeared for the
L1-type regularization, which is more aggressive in the selection of predictor variables. In this last case, thereis a
sharp peak for the accuracy and F1-score within a very defined range of values for the hyperparameter C.

For the best combination of hyperparameters, the mean accuracy for the 5 test folds was greater than 90%, a
result that indicates good generalization of the model. Note, however, that for the 5th fold the accuracy was
100% (not just the accuracy, but all other metrics calculated). As the separation of folds is random, this result is
explained simply by luck, although such results on test data are uncommon. It is also worth remembering that
each test fold consists of only 40 neuroimages (there are 5 folds in total for the 200 neuroimages provided), which
increases the probability of such results. The average for the recall was 85.00%, with a standard deviation close to
10%, suggesting an acceptable sensitivity for the AD group. For precision, the average was close to 95%,
indicating a very low false positive rate. Finally, the average for the F1-score resulted in 89.78%, a value close to
90%, which is a strong indication of an optimal balance between recall and precision.
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Figure 3. Principal component weights after training the classification model over all training data. The more positive the weight, the
greater the increase in probability for AD. The more negative, the greater the decrease in probability. Both cases reflect a high
predictive power (darker colors in the figure). Null values indicate no predictive power. The index of each principal component
indicate its position in the order of total explained variance.

After adjusting the classification model on all training data using the best combination of hyperparameters
and applying it to the test data, accuracy and F1-score (figure 5) had values similar to those obtained in the
hyperparameter optimization step (table 2). Bearing in mind that the model was trained on ADNI data (publicly
available) and the testing was performed on clinical routine data from CD], those results are very good, although
they exceeded 90% only for recall.

The specific classification metrics for the AD group (recall = 90.22%, precision = 86.46%, F1-
score = 88.30%, AUC = 94.75%) can be used to compare with similar works in the literature involving neural
networks. In Ding et al (2019) (Inception V3 architecture), it was used for training a total of 1921 imaging studies
(ADNTI) and 188 (ADNTI) for testing. The results for AD group (against MCI and nAD groups) were recall = 81%,
precision = 76%, F1-score = 78%, AUC = 92%. When the model were tested outside the ADNI set, the results
were recall = 100%, precision = 54% and F1-score = 70% for a total of 40 imaging studies. In Singh Singh et al
(2017), data from ADNI (186 CN, 178 early MCI, 158 late MCI, 146 AD) were used to train and test a Multilayer
Perceptron model after applying dimensionality reduction by probabilistic PCA. The results for the AD group
(against CN group) were recall = 96.32%, precision = 98.39%, F1-score = 97.34% and AUC = 95%, all of them
calculated as the mean for 10 folds by cross validation. Although a detailed comparison cannot be performed due
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Figure 4. Resulting linear combination of principal components adjusted by their respective weights in a sequence of axial slices.
Regions in red are associated with a higher probability for AD given high intensities in the voxels while regions in blue are associated
with alower probability for AD given high intensities in the voxels.

to the difference in the number of classes used, the specific results of this work for the AD group compare well to
results in the literature using neural networks. Even though it has not been tested on data outside the ADNI set,
Singh et al (2017) shows that the classification performance of neural networks can be extremely good when
taking the MCI class and its stages into account. It also shows that there is an improvement in model
performance when demographic variables are included (Singh et al 2017).

As abetter way to evaluate the performance of the LR model, it is convenient to train additional classification
models to perform a head-to-head comparison over the test data. In this sense, the SVM, MLP and RF models
were trained and optimized over the ADNI data, and the final metrics obtained by them over the test set are
shown in table 3. Note that, in terms of total accuracy, F1-score and AUC, the LR model was better than other
models. However, the RF and SVM models were better than the LR in terms of recall and precision, respectively.
Despite the differences in the metrics values, it is important to highlight that there was no statistically significant
difference between the predictive accuracy of the additional models and the LR, as indicated by the McNemar
test. This result suggests that the LR model performs at least as good as the additional models.

An advantage of using PCA and LR as a classification model lies in the interpretability of the decision rule and
the output. As depicted in figure 3, 23 out of 50 principal components were found to have zero weight, indicating
their lack of predictive power. This suggests that these covariance patterns are likely attributable to noise. The
use of regularization methods, particularly those of the L1 type, offers the benefit of automatic feature selection

9
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Figure 5. Confusion matrix of the classification model on the test data. There were 170 true positives, 13 false positives, and 9 false
negatives. The resulting metrics were: total accuracy = 88.54%, recall = 90.22%, precision = 86.46%, and F1-score = 88.30%.
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Figure 6. ROC curve of the classification model on the test data, withan AUC = 94.75%.

Table 3. Head-to-head comparison between the specific metrics of the LR model and the
additional models over the test set. McNemar test against LR predictions was performed for the
additional models (95% confidence).

Model Acc® (%) Rec” (%) Prec* (%) F14 (%) AUC (%) p-value®

LR 88.54 90.22 86.46 88.30 94.75 —
SVM 84.90 78.26 88.89 83.24 93.60 0.286
RF 88.02 92.39 84.16 88.08 93.59 1
MLP 84.38 77.17 88.75 82.56 92.95 0.210

* Total accuracy.

" Recall.

¢ Precision.

4 Fl-score.

¢ McNemar test against LR.

(Miao and Niu 2016), forcing the weight of noisy principal components to zero. The principal components with
non-zero weight probably have direct relation to AD and can be more effectively interpreted when analyzed
collectively through linear combination, as is shown in figure 4. The resultant biomarker, as it relates directly to
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Figure 7. Scatter plot comparing the log-transformed odds of non-AD (white color) and AD (black color) groups for the two datasets
(training and testing sets). The values were standardized by the mean and standard deviation of the CN group.
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Figure 8. Axial slices of FDG PET neuroimages from the CDI clinic of different patients and their respective output scores from the
classification model. All neuroimages were spatially normalized. The scores of patients with labels A, B, C, and D are, respectively,
0.61,4.08,7.62,and 8.21.

the probabilites for AD, is consistent with what is expected physiologically, as the dark blue regions (higher
probability for AD if there is hypometabolism) are concentrated in the parietotemporal association cortices and
the precuneus. This suggests that the classification model was well adjusted and was able to capture the pattern of
AD in FDG PET neuroimaging.

Additionaly, the use of log-transformed odds instead of the raw confusion matrix allows a more direct and
intuitive notion of the probability for the AD group, as well as the visualization of how the different groups are
separated from each other according to the classification model. The log-transformed odds can be seen in
figure 7 and show that the points for the nAD group from the test data are more spread out than the CN group
from training data. This was to be expected since classification as CN by ADNI takes into account not only FDG
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Figure 9. One year and 3 months apart follow-up of a AD patient at the CDI. Note the follow-up scores 0f 9.40 in the firstand 10.92 in
the second PET/CT study and how they compare to training and testing scores. In the left, AD and non-AD groups are shown in black
and white colors, respectively. The FDG PET neuroimages in the right show the increase of hypometabolism on the bilateral parietal
lobes, indicating the progression of AD. Neuroimages were spatially normalized.

PET neuroimages but also cognitive tests, for example. In the case of the CDI clinic, only FDG PET neuroimages
were used as reference. Despite this, the non-AD and AD groups are well separated for both datasets.

Beyond its role in classification, the output scores may also reflect the progression of AD. As depicted in
figure 8, the score for a healthy patient is near zero and situated to the left of the cutoft line, while the scores for
AD patients are to its right, as expected. Among AD patients, the output scores align with the disease’s
progression. Furthermore, figure 9 illustrates an increase in an AD patient’s output score correlating with disease
advancement over a period of one year and three months. This is attributed to the output scores quantifying the
extent of AD-specific hypometabolism expression (figure 4). However, to establish a definitive correlation
between output scores and AD progression, a more rigorous study is recommended. This could involve
comparing output scores with cognitive test results such as those from the Mini-Mental State Examination
(MMSE), a reliable measure of AD progression.

6. Conclusion

Through optimization of the classification model performed via GridSearchCV , it was possible to find the best
combination of hyperparameters (penalty = 11’ and C ~ 0.316). With this combination, the model was trained
on all the training data and then applied on the test data. The resulting metrics were satisfactory

(accuracy = 88.54%, recall = 90.22%, precision = 86.46%, F1-score = 88.30%, AUC = 94.75%), indicating
that there was a good fit of the classification model as well as a good generalization to neuroimages outside the
training set. Although a detailed comparison with other works in the literature was not possible, the metrics
referring to the AD group are comparable to the results of other works (Singh et al 2017, Ding et al 2019)
involving neural networks, indicating that PCA and LR, despite being classic methods, are applicable. A head-to-
head comparison with the SVM, MLP and RF classification models showed that LR was better in terms of total
accuracy, F1-score and AUC, but it is worth highlighting that there was no statistically significant difference in
terms of predictive accuracy between the LR and the additional models. This suggests that the LR performed at
least as good as the additional models. It was also shown that the advantages of using PCA and LR consist mainly
of interpretability, both in the parameters of the final classification model (which can be summarized as a
biomarker, directly related to the pattern of hypometabolism in AD) and in the final output (which can be shown
as the log-transformed odds).
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The exposed methods are perfectly reproducible even in the absence of high computational power and were
carried out with a simple experimental setup, relying only on a total of 200 FDG PET neuroimages from ADNI
for training and testing the model on 192 clinical routine neuroimages. Because the log-transformed odds
directly represent the degree of expression of the hypometabolism pattern for AD, we draw attention to the
possibility of future studies involving the relationship between output scores and AD progression. Although in
this work we have shown some selected examples in this sense, a more precise and robust study should be
carried out.
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